
2

S

6

b

Managing Content in the Transactional Application
by Deane Barker for Movable Type

February 19, 2014
31 S. Phillips Ave, Suite 200

ioux Falls, South Dakota 57104

05.334.7077
lendinteractive.com

Page 2 of 11 | Managing Content in the Transactional Application | by Deane Barker

Abstract

Transactional applications almost always have non-trivial content needs. These needs

can often not be met by a traditional content management system (CMS) due to

systemic conflicts and the potential for instability in the production environment.

This paper examines the usage of a small footprint, decoupled CMS such as Movable

Type to service this content. This paper will explain:

 Why is managing content difficult in transactional applications?

 What solutions exist to manage this content?

 What challenges are presented when integrating managed content into a

transactional application and how can they be overcome?

This paper is divided into two parts:

 Part 1 discusses the problem of managed content in transactional applications.

This is an overhead view of the problem domain, suitable for product managers.

 Part 2 discusses a specific set of technical challenges and solutions using

Movable Type and the MT.Net library. This section is intended for developers or

software engineers.

About the Author

Deane Barker is a founding partner in Blend Interactive, a content management

consultancy based in Sioux Falls, South Dakota. Deane has been implementing web

content management solutions for almost two decades.

Part 1: The Problem

Defining the Transactional Application

In the world of the web, there’s an important distinction between a web site and a web

application.

The former is generally focused on providing content, which we can define as

information specifically created by humans through editorial processes and intended for

mass consumption by other humans. Web sites produce and manage content for

primarily other ends – either an advertising supported business model, or the

promotion of a marketing goal.

Page 3 of 11 | Managing Content in the Transactional Application | by Deane Barker

Clear examples of content-focused websites would be a corporate marketing site, a

blog, a news or gossip site, etc.

Web applications exist to manage user-specific data which was generated from some

other transaction. In these cases, a user is manipulating data created through some

other process and intended specifically for them.

A classic example is an online banking interface. The information contained therein

wasn’t generated by humans (only indirectly, as a byproduct of a financial transaction),

is not designed for mass consumption (indeed, consumption beyond the intended user

would be considered a privacy breach), and is not designed to further any other goal.

Applications such as this can be roughly termed “transactional,” as they concentrate on

the manipulation/reporting of a data transaction, whether it be the transfer of money

from one account to another, the registration of a user for an event, or the retrieval and

display of the current weather conditions for the user’s city.

Applications don’t manage “content,” so much as they manage “data.” And the data they

manage is often not subject to any editorial process – there is no creation, no editing,

no approval, etc.

The Content Needs of the Transactional Application

While most of the information in a transactional application will be provided by the

source domain (the database of banking transactions, for instance), there are invariably

more traditional content needs spread throughout the application.

Consider:

 Help Topics: the application might require many pages of text- and image-

heavy documentation.

 Marketing Content: the application might offer subscription options which

require marketing content used to upsell users.

 Label and Instructional Content: the application likely has introductory

headings, form element labels, copyright notices, error messages, etc.

These examples are not transactional data, they are content. This information needs to

be created, revised, discussed, collaborated on, versioned, approved, and published.

Collectively, these are editorial processes.

Page 4 of 11 | Managing Content in the Transactional Application | by Deane Barker

To manage this content, many applications build in rudimentary content management

capabilities (some frameworks even provide this –“flatpages” in Django1, for instance),

but these generally functional poorly and suffer from being viewed as a necessary evil

and not the prime focus of the development team. As such, they’re almost always

missing higher-level content management functionality such as granular permissions,

workflow, versioning, localization, etc.

Content management systems exist to solve these exact problems. Why aren’t these

used to manage the content needs of a transactional application?

Problems with the Traditional CMS Model

Content management systems can be roughly divided into “coupled” and “decoupled”

models2.

 In a “coupled” environment, one CMS environment serves both editors and

consumers – the same server on which the content is delivered is the server on

which the content is edited. This means the CMS is actively installed and

running on the production server.

 In a “decoupled” environment, the CMS exists apart from the production server.

Content is edited and managed in one environment, then pushed into another

environment for delivery. Indeed, the delivery server may just accept this

content as flat HTML files with no knowledge of the CMS that generated it –

there is an impermeable line between the CMS and the delivery server, such

that the delivery server maintains complete ignorance of the CMS.

In today’s CMS landscape, coupled options are far more common (especially on the .Net

and PHP platforms, where decoupled systems almost unheard of).

Beyond the dearth of options, the coupled model is problematic when trying to manage

content for a transactional application. In coupled architectures, the CMS (or at least

some components of it) must be installed and run in the production environment.

Given that the modern coupled CMS is complex and computationally-heavy, this

presents multiple problems when trying to co-exist in the same environment with

another application.

 Performance: a coupled CMS introduces considerable processing overhead

which is often incurred on every request

1 “The flatpages app,” https://docs.djangoproject.com/en/1.6/ref/contrib/flatpages/
2 “Decoupled Content Management 101,” http://gadgetopia.com/post/7206

Page 5 of 11 | Managing Content in the Transactional Application | by Deane Barker

 Stability: a processing failure of the CMS can bring the entire application down

 Security: a security exploit in the CMS can provide a foothold from which an

attacker can gain access to the larger application

 Licensing: if the application runs across multiple servers, this often requires

licensing (and paying for) the CMS multiple times

 Resource Conflicts: it’s not uncommon for applications to “compete” for the

management of inbound requests, database namespaces, file system resources,

etc.

 Complexity: the introduction of another system to the runtime environment

increases the time required for debugging and trouble-shooting issues.

Most transactional applications are complicated works of software engineering,

requiring complete control over their processing domain, including the file system, the

database server, and the web server itself. The same can be said for the modern, coupled

CMS.

Clearly, trying to have both systems exist on the same server is problematic.

A Decoupled Solution

A proven method to removing the complication and instability is to manage content in a

separate environment, then “inject” that content into the production environment. The

goal is to inject it in such an innocuous method that conflicts are avoided.

The simplest, safest and most obvious method is to “bake” content into static, self-

contained HTML files then push these files to the production environment (via file copy,

FTP, or similar method). The files are then processed as simple HTML by the web

server. When content is edited, the affected files are over-written. The production

environment remains ignorant of how those files were produced.

Unfortunately, while quite safe, flat HTML has very little presentational agility. The

content of each page is fixed at the time it’s generated. This presents problems when it

becomes necessary to react to situations at request time. Many elements on a page are

contextual to both the user’s behavior and the location of the content within its larger

context.

Examples:

Page 6 of 11 | Managing Content in the Transactional Application | by Deane Barker

 If a user is in a certain usergroup (they have an active support contract, for

example), additional content is available. New navigation options should

appear in the menus alongside the default options.

 Based on the user’s marketing profile, specific promotional content should

display in the sidebars.

 Periodically, downtime notices need to appear above all content in the site for

users in a specific geographic region.

Publishing static HTML files requires the publishing of content in one format to fulfill

multiple presentation profiles.

There’s a temptation to add code to these files (inline PHP, for example), which is

executed at request time. However, these files might run outside of the core application

process, thus excluding them from any information supplied by the application (for

example: is the user logged in, in what security groups do they exist, etc.). If they run

inside the process, they introduce more complexity and provide a method by which

content editors could inject code into the core application. Neither situation is

desirable.

The solution is to move from publishing static files to publishing content in a data-

centric, presentation-free format that can be absorbed into the core execution process

and manipulated for display at request time.

Part 2: The Solution

Enter Movable Type

Movable Type3 is a well-established storied CMS dating to 2001. In continuous

development since, it is an affordable, mature solution for managing decoupled content.

Movable Type is written in Perl and can use a variety of databases.

For this paper, a proof-of-concept was created using Movable Type to serialize content

into XML data and inject that data into an ASP.Net MVC environment for delivery

alongside (presumably) a larger transactional application.

The results of this proof-of-concept have been published as the MT.Net project at

Github4, freely available under an MIT License.

3 http://movabletype.org/
4 https://github.com/MTUS/mt-net

Page 7 of 11 | Managing Content in the Transactional Application | by Deane Barker

Challenges and Solutions

There are dozens of possible ways to architect this solution, but some challenges will

be universal, no matter the specific solution architecture. The following challenges were

identified and answered during the prototyping process and are intended to be an

instructive look at these problems and examples of solutions.

In what data format do you publish content?

Content should be published in a presentation-neutral format which allows for easy

parsing and manipulation with supported tools. For this prototype, XML was selected as

a serialization language as it’s well-supported in the .Net framework through both

traditional DOM parsing and LINQ-based querying.

Movable Type’s templating architecture will render any text format, and tag modifiers

are available to enable the secure formatting of XML content.

There’s a temptation to simply serialize the entire content database as XML and inject a

single monolithic file into the production environment. In some situations – perhaps

those with smaller amounts of content – this might be desirable.

However, for the sake of processing efficiency, we elected to publish each content item

(page or blog entry) as a single file, along with a single manifest file listing all the

available content. The benefit of this model is that publishing new content becomes

incurs overhead of N+1 – the number content objects changed, plus the manifest file.

How will content be transferred from the management environment to the delivery

environment?

A number of methods could be used. Some examples:

 Movable Type supports multiple direct methods, including FTP, SFTP, and rsync.

 File system assets can be synchronized outside of the Movable Type process

using common tools such as Microsoft’s Distributed File System5 or Unison6.

 Movable Type is able to “notify” the publishing environment that new content

has been published (via HTTP ping; see below), thus enabling a “ping and

retrieve” scenario where the publishing environment proactively pulls new

content through a web service, file copy, or other method. (There are some

drawbacks to this method; again, see below.)

5 “Distributed File System (Microsoft),” http://en.wikipedia.org/wiki/Distributed_File_System_(Microsoft)
6 “Unison: File Synchronizer,” http://www.cis.upenn.edu/~bcpierce/unison/

Page 8 of 11 | Managing Content in the Transactional Application | by Deane Barker

 Content doesn’t need to be bound to the file system. A process on the Movable

Type server could insert changed content into a remote database accessible to

the publishing environment, for instance.

For our proof-of-concept, we left this question open by simply publishing directly into a

file location accessible to the publishing environment.

How is an inbound request identified as a request for content, rather than application

functionality?

This question lays bare the fact that two domains of information are sharing the same

URL namespace. Which functionality “owns” a specific inbound request? Should the

transactional application respond to the request, or should it be fulfilled from the

editorial content?

If publishing flat HTML, it would be enough to simply allow the web server to fulfill

requests normally. However, to deliver parsed data in-process, we need to find a way

for the application to identify and respond to content requests.

Our solution was to implement a “filter” through which all inbound requests pass.

Requests that are intended for content are re-routed to an MVC controller for handling,

while other requests simply pass through to be handled normally.

ASP.Net provides an event-based request lifecycle which allows us to hook into the

inbound request before any other processing takes place by attaching a handler to the

appropriately-named “BeginRequest” event. 7

A data structure holds an index of all valid content paths. Our request filter checks this

structure for content which matches the inbound path. If matching content exists, the

request is rewritten to a controller/action which retrieves and delivers the content.

Requests for which no matching path can be found simply pass through the filter to be

handled as normal.

To keep overhead as minimal as possible, we elected to cache the path database in

memory, rather than do a lookup from any persistent datastore. A C# Dictionary object

was used to store all available content paths as indexed keys. This Dictionary was

cleared and re-loaded whenever new content was published.

Another benefit of the filtering method is instant “detachability.” Removing all content

functionality (for example, to improve performance, remove a security threat, or simplify

debugging) simply means disabling the filter. With nothing evaluating inbound requests

7 “Walkthrough: Creating and Registering a Custom HTTP Module,” http://msdn.microsoft.com/en-

us/library/ms227673(v=vs.100).aspx

Page 9 of 11 | Managing Content in the Transactional Application | by Deane Barker

for matching content, this functionality is removed instantly and completely without

any other changes required to the underlying application.

How are bootstrapping activities initiated when content is published?

A content publishing event might require bootstrap activities, such clearing of caches

(in the example above), re-indexing content for search, resetting analytics, etc.

To capture the content publishing event, Movable Type has a “ping” feature which will

make an empty HTTP request to a specified URL after publishing is complete. To use

this, we can simply specify this URL as one fielded by a controller in our application

which initiates all necessary bootstrapping.

A disadvantage of this method is that, depending on your Movable Type configuration,

the ping might not be a reliable publishing indicator. Movable Type has an alternate

publishing method called the Publish Queue8. When using this method, the ping takes

place when items are queued rather than published.

An alternate option would be to “watch” a file which is republished every time content

changes (the manifest file, for instance). When this file changes, either initiate

bootstrapping without a pending request, or clear a flag which is detected on the next

inbound request, and initiate bootstrapping then.

(ASP.Net even supports this through its built-in Cache object. Items cached in memory

can be bound to a file and invalidated when the file changes.)

How do you avoid path conflicts between content and application functionality?

Under the filtering architecture described, editors can create content at any path, which

effectively gives editors the power to usurp any URL path accidentally. This re-surfaces

the question who “owns” the URL namespace – the content or the application?

For instance, if the transactional application provides major account functionality

through a controller mapped to “/account,” an editor could inadvertently cripple the

application by publishing content to that path. Since the request filter runs before any

other processing, it will match content at that path and reroute the request before the

application was aware of it.

The solution is to disallow the indexing content belonging to specified path patterns.

Configuration options were added to allow application developers to “protect” specified

URL prefixes. Thus, the “/account” URL prefix can be reserved for the application alone.

8 “Using Movable Type’s Publishing Queue,”

http://movabletype.org/documentation/administrator/publishing/publish-queue.html

Page 10 of 11 | Managing Content in the Transactional Application | by Deane Barker

Editors can still publish content to conflicting paths, but this content would never be

indexed, and would therefore be invisible to the request filter.

(This pattern matching was implementing by simple checking the beginning of the path

string, but more sophisticated methods – such as regex parsing – are available. As

discussed below, the paths were cached at publish time, meaning the frequency and

consequent overhead of this operation is very low.)

How do you create easy, consistent, and manageable content handling at the template

layer?

Template designers need to be abstracted away from the serialized content as much as

possible, to avoid introducing any dependencies on serialization, and to ensure content

is parsed and handled consistently.

Parsing of the content was moved “backwards” away from the template as much as

possible. It can be done in the controller, but can also be moved even further backward

into the request filter itself. As content has to be parsed to populate the path index, it

introduces little overhead to simply store the parsed content object as the value of the

path index.

The result is that the controller which displays the content receives a strongly-typed C#

object representing the parsed content. This content object is injected directly into the

template (the MVC View), ensuring consistent handling and ease of content

manipulation by template designers. This also ensures the serialization and parsing

format can be changed with no impact to existing template code.

How do you query the repository of content?

While templating individual content objects is important, at some point you need to

query the repository to determine more global, contextual issues, especially when

rendering navigation.9

This includes queries such as:

 What content is available?

 What content is spatially related to Content X? (For example: parent, child, or

sibling content.)

 What content is available “below” a specific path?

9 "The Necessity of a Content Index,” http://gadgetopia.com/post/8041

Page 11 of 11 | Managing Content in the Transactional Application | by Deane Barker

This is addressed by creating a “repository” object which stores a strongly-typed

reference to every content item. Using .Net’s LINQ query facilities, we are able to build

methods that allow code to traverse and freely querying the “tree” of content in order to

do such things as render navigation. The content repository contains a reference to the

hierarchy of content based on its path, and can answer global questions (the retrieval of

all content at the top level, for instance).

Properties were added to the individual content item class to allow the navigation to

spatially-related content – its parents, direct children, siblings, ancestors, and

descendants.

Conclusion

Decoupling the management of editorial content from your transactional application

provides clear benefits to stability, security, and performance. Unfortunately, decoupled

CMS solutions tend to be expensive, and running the resulting content as part of an

integrated whole is difficult.

Movable Type and MT.Net combine to present a cost-effective solution for deeply

integrating managed content into a transactional application in such a way that the

content doesn’t compromise the runtime performance and appears to be completely

native to the application.

MT.Net

The proof-of-concept as described is freely available as “MT.Net” at Github:

https://github.com/MTUS/mt-net/

Included is the core C# library for managing the generated XML, sample templates for

the Movable Type installation, a sample website implementation, and sample data to

test with. Upon download, it should run directly out of Visual Studio.

This code is open-source under the MIT license.

It is to be considered concept code only. It has not been deployed to a production

environment and should be formally tested before use.

